Below are links to publications on the SMILE Program.

Annual Reports

2015-16 Annual Report



SMILE Program Brochure

Becoming a New SMILE Teacher



Fall 2016 SMILE Newsletter

Spring 2016 SMILE Newsletter



SMILE's Program Framework:
Fostering College Access and Success Through University/School/Community Partnerships



Taylor, Seth, Calvo-Amodio, Javier, and Well, Jay, 2020
A Method for Measuring Systems Thinking Learning
Systems 2020, 8(2), 11
Abstract: The myriad of problems facing the world today are increasingly complex, dynamic, and transcend multiple domains. This necessitates the need for trans-disciplinary approaches capable of providing a framework to help solve these problems. Systems thinking provides the skills necessary for people to approach these types of problems. However, a lack of awareness and understanding of systems thinking hinders a potential systems-literate and systems-capable society. Systems thinking is comprised of four underlying concepts or skills: distinction-making, organizing systems, inter-relating, and perspective-taking. The path to becoming a systems thinker follows a process comprised of three levels—sensibility (awareness of systems), literacy (knowledge of systems), and capability (understanding of systems)—repeated across multiple learning phases. During this research study, a method was defined to measure whether non-experts learned the underlying systems thinking concepts according to this learning process. An experiment was conducted with 97 middle and high school students who were asked to draw a fish-tank system before and after being taught to apply the systems thinking concepts as skills for identifying elements, interactions, and roles/purposes. The results provide evidence to conclude that student learning of systems thinking significantly increased from the first drawing to the second drawing.

Traphagen, Kathleen and Traill, Saskia, 2014
​​​​​​​How Cross-Sector Collaborations are Advancing STEM Learning
Working Paper
Abstract: STEM learning ecosystems harness unique contributions of educators, policymakers, families, and others in symbiosis toward a comprehensive vision of science, technology, engineering, and math (STEM) education for all children. This paper describes the attributes and strategies of 15 leading ecosystem efforts throughout the country with the hope that others may use their lessons to deepen rich STEM learning for many more of America's children.

Bottoms et al., 2017  S.I. Bottoms, K. Ciechanowski, K. Jones, J. de la Hoz, A.L. Fonseca
Leveraging the community context of Family Math and Science Nights to develop culturally responsive teaching practices
Teaching and Teacher Education, 61 (2017), pp. 1-15
Abstract: This paper examines how elementary teacher candidates experience Family Math and Science Nights with culturally and linguistically diverse children and families. Weekly reflections were analyzed using Gay's (2002, 2013) Culturally Responsive Teaching framework to highlight the process of enacting and thinking in key areas: (1) Changing attitudes and beliefs, (2) Leveraging culture and difference, (3) Grappling with resistance, and (4) Improving pedagogical connections. An action-oriented focus underscores that teacher candidates need multiple rounds of practice to disrupt traditional notions of teaching and move towards cultural responsiveness. Findings suggest the importance of repeated practice, context, and focused guided reflection.